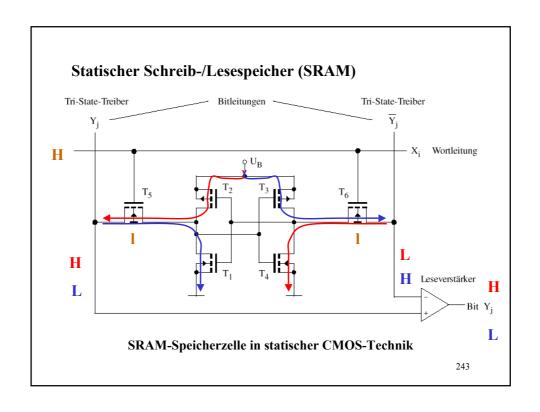
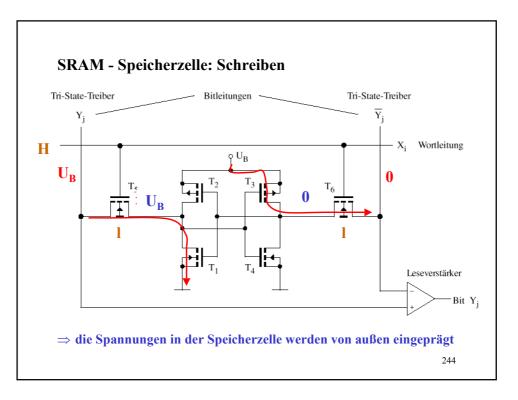
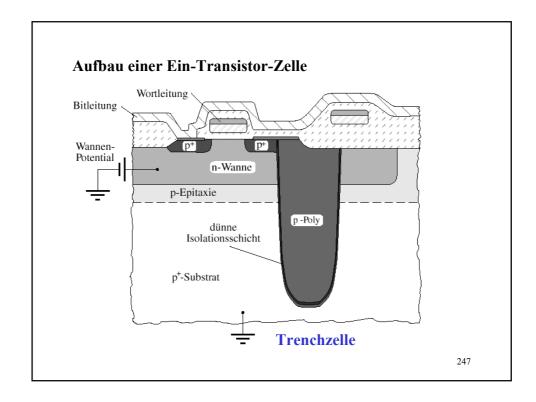

5 Zusammengesetzte und reguläre Schaltungsstrukturen

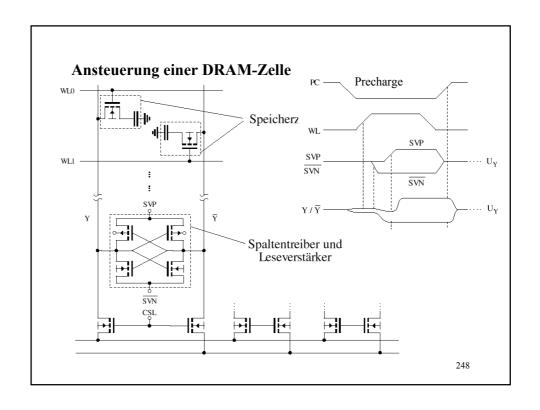

- regelmäßig aufgebaute (reguläre) Schaltungsstrukturen implementieren jeweils eine größere Zahl an Gatterfunktionen
- wichtigste Vertreter: Speicher, programmierbare Logikbausteine, Gate Arrays
- Vorteile
 - oftmals bessere Flächeneffizienz
 - Vereinfachung und Beschleunigung des Entwurfs
- Probleme
 - Zeitverhalten, Störungen, Flächeneffizienz bei weniger "regelmäßigen" Funktionen

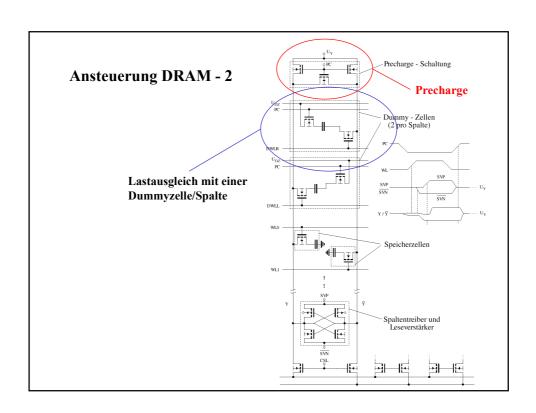

240

Speicher

- wichtigste Gruppe der regulären Schaltungsstrukturen
- wesentliche Kenndaten
 - Speicherkapazität
 - maximale Zugriffszeit t_{AC}
 - minimale Zykluszeit t_{CYC}




Probleme des Speicherentwurfs


- hohe Flächeneffizienz erfordert
 - große Speichermatrizen ⇒ lange Leitungen mit hohen Kapazitäten (RC-Leitung)
 - kleine Speicherzellen ⇒ geringe Treiberfähigkeit
- ⇒ hohe Zugriffszeiten
- heute ≥ 512 Zeilen und Spalten pro Speicherblock
- Ansatz:
 - verringerte Störabstände und symmetrische Signalübertragung mit Precharge auf den Bitleitungen
 - empfindliche Leseverstärker (mit $\Delta U < 1 \text{mV}$)
- $\bullet \quad \mathbf{t}_{\mathrm{AC}} = \mathbf{t}_{\mathrm{CYC}}$
- Beispieldaten: Kapazität = 1MByte, t_{AC} < 5ns (Motorola: http://www.mot.com/SPS/FastSRAM/productupdate/ddr.html)

Dynamische Schreib-/Lesespeicher (DRAM)

- Schreiben wie statischer Speicher
- Lesen mit Ladungsumverteilung von C auf C_L $C << C_L \qquad U_{Yj} = U_C \cdot \frac{C}{C + C_L}$ $\Rightarrow \text{,,zerstörendes" Lesen, sehr kleines Lesesignal}$
- ⇒ Maximierung der Kapazitäten C erforderlich

Ansteuerung des DRAM - 3

• Rückschreiben nach jedem Lesevorgang

```
\Rightarrow t<sub>CYC</sub> > t<sub>AC</sub>
Beispiel: t<sub>AC</sub> = 20ns, t<sub>CYC</sub> = 70ns (Samsung KM416S4030C)
```

- Auffrischen der Speicherzellen (Refresh) durch rechtzeitiges Lesen jeder Speicherzeile
 - Beispiel: 1024 Zeilen, Refresh alle 16ms → 1 Refreshvorgang/16 μ s d.h. bei t_{CYC} = 70 ns tritt in weniger als 1% der Fälle ein Zugriffskonflikt auf ⇒ meist vernachlässigbar
- insgesamt komplexe Steuerung

250

SRAM und DRAM

- der dynamische Speicher hat eine größere Packungsdichte als der statische (>Faktor 4)
- der dynamische Speicher ist langsamer
 - ⇒ Speicherhierarchie mit statischem Cache
 - \Rightarrow blockweise Zugriffe auf lange Speicherzeilen: SDRAM, SLDRAM , RAMBUS
- aufgrund der einfacheren Ansteuerung werden statische Speicher für Aufgaben mit geringen Anforderungen an die Speicherkapazität eingesetzt (Puffer, Registerfiles, ...)

Festwertspeicher

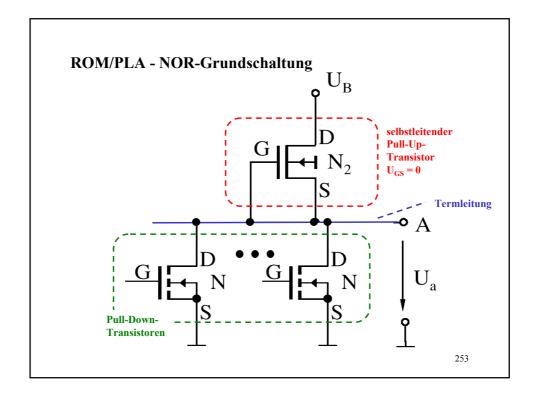
- Wert kann nur gelesen werden
- ROM (Read Only Memory):

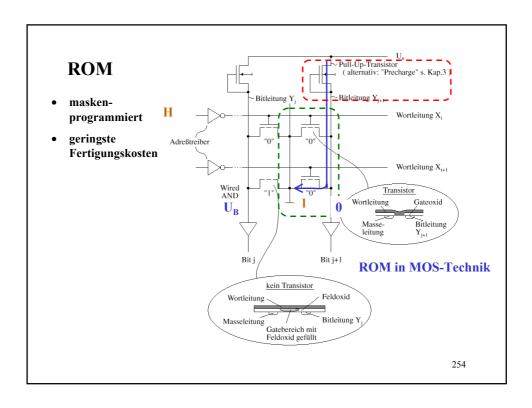
Der Speicherinhalt wird bereits bei der Fertigung festgelegt und ist daher nicht änderbar.

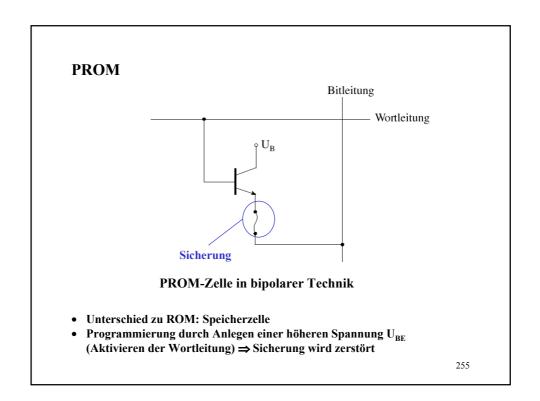
• PROM (Programmable ROM)

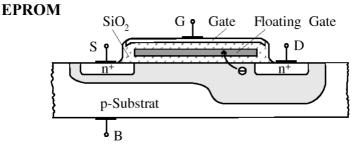
Der Speicherinhalt kann einmalig vom Anwender einprogrammiert werden, ist jedoch danach nicht mehr änderbar.

• EPROM (Erasable PROM)

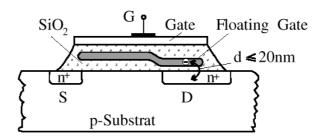

Der Speicherinhalt wird vom Anwender einprogrammiert und kann durch UV-Strahlung wieder gelöscht werden.


• EEPROM (Electrically Erasable PROM)


Der Speicherinhalt ist wie beim EPROM löschbar, allerdings elektrisch.


• Flash EPROM

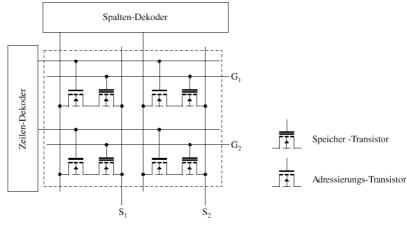
Der Löschvorgang wird wie beim EEPROM elektrisch aktiviert. Die Löschung erfolgt jedoch sektorenweise.



FAMOS-Transistor zur Realisierung einer EPROM-Speicherzelle

- Unterschied zu ROM: Speicherzelle
- durch Anlegen einer hohen Spannung U_{DS} (z.B. U_{DS} = 17V) entsteht bei U_{SB} = 0 eine hohe Feldstärke nahe dem Drain-Bereich, die zur Generierung "heißer" Elektronen führt
- durch Anlegen einer hohen Spannung U_{GS} (z.B. U_{GS} = 24V) werden diese Elektronen teilweise durch das Gateoxid auf das isolierte Floating Gate gezogen ⇒ Schwellspannung steigt
- Entfernen der Elektronen durch UV-Strahlung

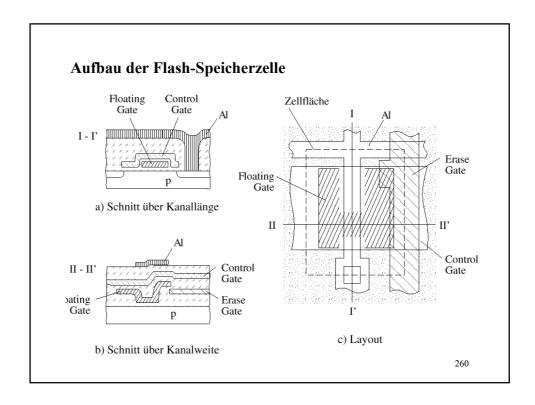
256


EEPROM

Transistor einer EEPROM-Speicherzelle

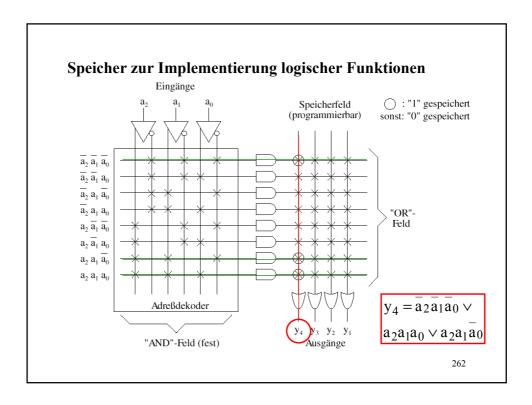
- Floating Gate wie EPROM, aber dünneres Oxid über Drain oder Kanal erlaubt Tunneln von Ladungsträgern (statt Avalanche-Durchbruch wie beim FAMOS)
- $\begin{array}{l} \bullet \quad \quad & Effekt \ umkehrbar \ zur \ elektrischen \ Löschung \\ Problem: \ negative \ Schwellspannung \ U_{th} \ m\"{o}glich, \ daher \ zweiter \\ Transistor \ erforderlich \\ \end{array}$

EEPROM Speichermatrix


 Adressierungs-Transistor trennt nicht adressierte EEPROM-Zellen von den Bitleitungen

258

Flash-Speicher

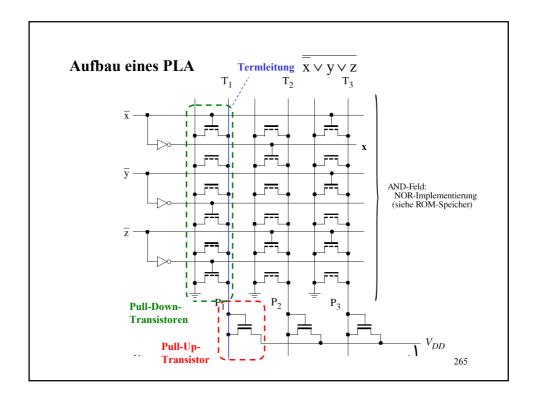

- Kombination von Adressierungs-Transistor und Speichertransistor in einem komplexen Element
- gemeinsames Löschen von Blöcken über zusätzliches Erase-Gate (Flash)

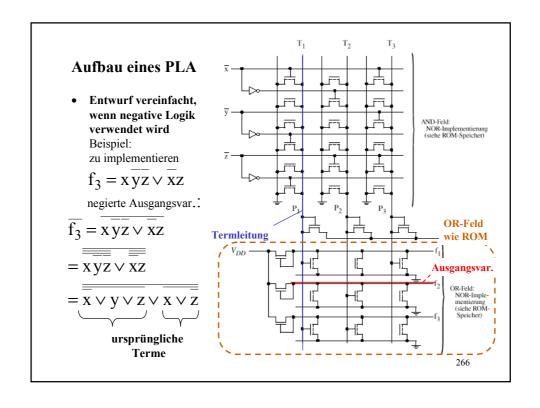
 ⇒ schneller, einfacher Löschvorgang

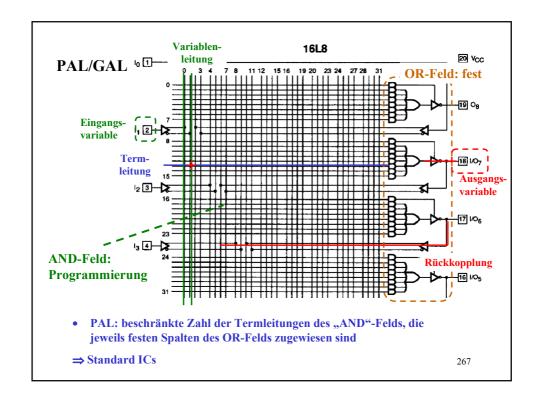
Einsatzbereiche der Speicher

- Verwendung als Programm-, Daten- oder Pufferspeicher
- Implementierung logischer Funktionen in zweistufiger Logik in disjunktiver kanonischer Form (disjunktive kanonische Form: Aufzählung der Minterme)

Speicher zur Implementierung logischer Funktionen - 2

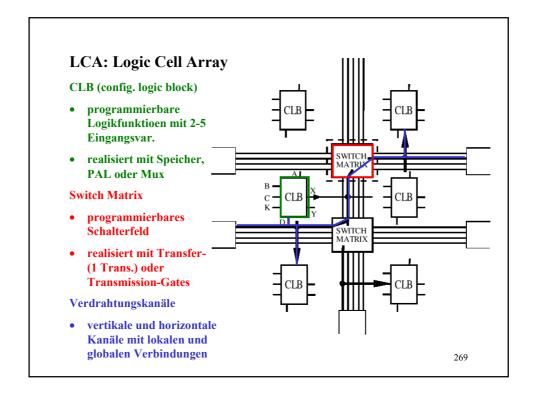

- Vorteile: hohe Packungsdichte der Minterme, garantiertes Zeitverhalten
- Nachteile: 2ⁿ Wortleitungen für n Eingangsvariablen
 Beispiel: 8 Ausgangsvariablen, 20 Eingangsvariablen: 1 MByte
 Speicherkapazität

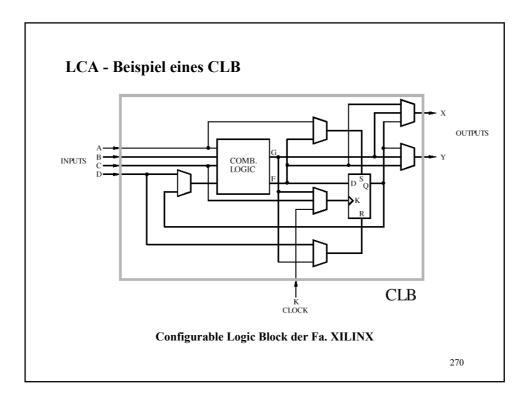

Programmierbare Logik PLA und PAL


- Problem des Speichers: stets Implementierung jedes Minterms
- PLA: Ersatz des Adreßdecoders durch ein programmierbares "AND"-Feld ⇒ Implementierung der optimierten DNF statt der DKF

Im Beispiel:
$$y_4 = \underbrace{a_2 a_1 a_0 \lor a_2 a_1 a_0}_{\text{DKF}} = \underbrace{a_2 a_1 a_0 \lor a_2 a_1}_{\text{DNF}}$$

• Übliche Implementierung als NOR-NOR Funktion





PLA/PAL - Bewertung

- einfache Implementierung von logischen Funktionen
- Standard-ICs für Produktion und Labor verfügbar sehr schnell (t_{pd} ≤ 5ns)
 Anwendungen: Adreßdekodierung, Speichersteuerung, Reset-Logik, ...
- PALs mit Flip-Flops zu Implementierung von Automaten
- hochdichte Implementierung auf der integrierten Schaltung (Anwendung z.B. Befehlsdekodierung)
- nur zweistufige DNF implementierbar,
 - ⇒ weniger effizient bei komplexen Funktionen mit vielen Eingängen, langsam bei Verwendung der Rückkopplung

LCA - 2

- andere Bezeichnung: FPGA (field programmable gate array)
- Programmierung als RAM, PROM, EPROM, EEPROM, Flash EPROM
- aufwendige, aber sehr flexible Schaltungsstruktur
- verfügbar bis über 10 Mio Gatteräquivalente + Speicher ⇒ ganze Schaltungssysteme implementierbar
- rekonfigurierbare Systeme mit programmierbarer Funktion als Ersatz für programmierbare Prozessoren oder späte Änderung der Schaltungsfunktion möglich
- programmiert durch Synthesewerkzeuge
- Probleme:
 - hoher Preis bzw. Fläche bei größeren LCAs
 - Verlustleistung
 - begrenzte Schaltgeschwindigkeit (spezifiziert: max. ca. 400MHz Taktfrequenz)