
Teachers guide to starting to
learn Just Basic

1 igover@somerset.gov.uk – April 2012

This guide is a suggestion in how to learn Just Basic1. It is intended for educators and assumes
that Just Basic is already installed on the computer.

Most of this work is a summary of the tutorial to be found in the help menu. There is a lot of other
good help and guidance that can be found on the web.

Most the programs can be found here in a zipped file.

All good programmers plan what they are going to do before they complete a task. This ‘mission
statement’ is normally written in plain English as an algorithm (or pseudo code). Because of the
experiential nature of this tutorial this important step is highlighted in italics.

Program 1 – Working out VAT
In this first exercise we are going to create a program that:

1. Asks for an amount for goods before VAT is added;

2. Calculates a 20% VAT tax amount;

3. Displays the tax amount the total amount.

Type in the following into the main window

Click on will compile and run the program.

A new window should appear that allows you to enter an amount and then work out the VAT.

If you want to step through the program to see it working line by line click on . Move the
windows around so you see both the output window and the debugger.

Click on to step through the program line by line.

1
 http://justbasic.com/

https://slp.somerset.gov.uk/cypd/elim/somersetict/Innovative%20Use%20of%20ICT/Forms/AllItems.aspx?RootFolder=%2fcypd%2felim%2fsomersetict%2fInnovative%20Use%20of%20ICT%2fProgramming%2fJustBASIC%20Programs&FolderCTID=&View=%7b5D1BCDE6%2d16DE%2d4020%2d891C%252
http://justbasic.com/

Teachers guide to starting to
learn Just Basic

2 igover@somerset.gov.uk – April 2012

Program 2 – Checking the input for a zero amount

We are going to complicate our program by making it repeat every time and checking to see if the
amount entered is zero.

The algorithm becomes:

1. Asks for an amount for goods before VAT is added

2. Check to see if amount is greater than zero

a. If not display help file

3. Calculates a 20% VAT tax amount

4. Displays the tax amount the total amount

5. Returns to beginning of program

amount and tax are called variables.
Note the way in which label [start] and the sub routine help are used.

 If you enter a number such as 123.12 into this program it will give you an answer of 147.744. Whereas this is true it

is not a good representation of money.

The INT() command can be used to round the number to 2 decimal places.

(int((tax*100)+0.5))/100 will round the VAT number to the correct number of decimal places

Teachers guide to starting to
learn Just Basic

3 igover@somerset.gov.uk – April 2012

Program 3 – A number guessing game
This is a simple guessing game. The computer will pick a number between 1 and 100. The user
guesses the number in as few guesses as possible.
The algorithm is:

1. Pick a number between 1 and 100

2. Print program title and give some instructions

3. Ask for the user to guess number

4. Tally the guess

5. If the guess is right go to step (9)

6. If the guess is too low tell the user to guess higher

7. If the guess is too high tell the user to guess lower

8. Go back to step (3)

9. Beep and tell the user how many guess it took to win

10. Ask the user whether to play again

11. If the user answers yes then clear the guess tally and goto step (1)

12. Give the user instructions on how to close the game window

13. End the program

Compare the
program to the
algorithm.

The ‘grey
comments are
remark
statements
and can be
used if you
come back to
a program
after a long
while.

Teachers guide to starting to
learn Just Basic

4 igover@somerset.gov.uk – April 2012

Program 4 – Using Arrays

Programs are often asked to process a lot of data. To do this they can use arrays. In this program
we are going to store up to 20 numbers in an array and then work out their average. The algorithm
is:

1. Define an array to hold up to 20 numbers

2. Ask user for a number

3. If number is 0 then step 8 to calculate average

4. Increase array number by 1

5. And number to total

6. Check to see if 20 numbers are entered – if so step 8

7. Ask for another number – step 2

8. Display numbers entered and calculate average

Note the following

An array numbers has to be set up at the beginning of the program.
The numbers in the array can be displayed by printing numbers(index)

Numbers are treated differently to other variables in BASIC.

A number variable can have a descriptor of just letter or more helpfully a name.

Word (including characters (such as !”£$%^&) are called strings and need variables that have a $ after their name such

as firstname$ or lastname$.

You can complete several task with strings – what do think this program does

input "First Name "; firstname$

input "Last Name "; lastname$

fullname$ = firstname$ + " " + lastname$

print

print fullname$

Print

print "Your first name is "; len(firstname$); " characters long"

print "Your last name is "; len(lastname$); " characters long"

print "Your full name is "; len(fullname$); " characters long"

print

print "Your full name in lower case "; lower$(fullname$)

print "Your full name in upper case "; upper$(fullname$)

Teachers guide to starting to
learn Just Basic

5 igover@somerset.gov.uk – April 2012

Teachers guide to starting to
learn Just Basic

6 igover@somerset.gov.uk – April 2012

'AGES_STORE.BAS
 'Accept some names and ages from the user, then total and average them
 dim numbers(20)
 dim names$(20)
 print "AGES.BAS"
 print

 'loop up to 20 times, getting numbers
 print "Enter up to 20 non-zero values."
 print "A zero or blank entry ends the series."

[entryLoop] 'loop around until a zero entry or until index = 20

 'get the user's name and age
 print "Entry "; index + 1;
 input name$
 if name$ = "" then [endSeries] 'quit if name$ is blank

 print "Age ";
 input age

 index = index + 1 'add one to index
 names$(index) = name$ 'set the specified array item to be name$
 numbers(index) = age 'set the specified array item to be age
 total = total + age 'add entry to the total

 if index = 20 then [endSeries] 'if 20 values were entered, exit loop

 goto [entryLoop] 'go back and get another entry

[endSeries] 'entries are finished

 'Set entryCount to index

 entryCount = index
 if entryCount = 0 then print "No Entries." : goto [quit]

 print "Entries completed."
 print
 print "Here are the "; entryCount; " entries:"
 print "-----------------------------"

 'This loop displays each entered value in turn.
 'Notice that we re-use the index variable. It can be confusing to use
 ‘a new variable for each new loop.
 for index = 1 to entryCount
 print "Entry "; index; " is "; names$(index); ", age "; numbers(index)

 next index

 'Write the data into ages.dat
 open "C:\Documents and Settings\igover\My Documents\just basic files\ages.dat"
for output as #ages
 for index = 1 to entryCount
 print #ages, names$(index)
 print #ages, numbers(index)
 next index
 close #ages

 'Now display the total and average value
 print
 print "The total age is "; total
 print "The average age is "; total / entryCount

[quit]
 end

Program 5 –Storing the information on the computer
This program extends
the previous algorithm
by adding names and
then storing the data on
a disc.

Note the ways the
names have to be
stored in a variable with
a dollar $ at the end –
names$.

This is the part of the
program that stores the
data.
open "path.myfile.txt"
for output as
#myHandle

You can see the
OUTPUT mode is
specified. The last item
on the line is
#myHandle. It is a
name (called a file
handle).

Teachers guide to starting to
learn Just Basic

7 igover@somerset.gov.uk – April 2012

The file must be closed.

Program 6 - Reading the file

The algorithm to read the file is:

1. Open the file

2. Check to see if it is the last one in the file then step 4

3. Read the entry and store in an array

4. Read next entry – step 2

5. Print entries

6. Calculate average

This
program will
read the
ages.dat file

The
eof(#ages)
checks to
see if the
end of the
file has
been
reached. If
it has it
returns a -1.

The use of
the #ages is
the file
handle.

Teachers guide to starting to
learn Just Basic

8 igover@somerset.gov.uk – April 2012

Program 7 – Opening windows

Just Basic can be used to control
windows.

This program:

1. Opens a window with

defined size

2. Displays a button

3. When clicked displays

message

The button statement needs a little
unpacking.

You must give a handle for the
button – in this case #myFirst.ok

The [okClicked] tells Basic to go to
the [okClicked] routine

UL tells Basic to put the button at
the Upper Left of the window. You
can also have UR, LL and LR.
The numbers are the position from
the corner.

Teachers guide to starting to
learn Just Basic

9 igover@somerset.gov.uk – April 2012

Program 8 – More window formatting and closing

In this development of the last program we are going to follow the following algorithm:

1. Open a window

2. Display

a. OK Button

b. Textbox

c. Instructions

3. If Ok clicked then display contents

4. Check to see is close window is used

Note the use of statictext to position
instruction.

The “trapclose instruction will detect
if the window is being closed and
move to the label [quit]

Teachers guide to starting to
learn Just Basic

10 igover@somerset.gov.uk – April 2012

Program 9 – Drawing a Square

This program opens a
graphic window as #draw

and then draws a square

‘Flush’ fixes the drawing.

Program 10 – Adding a bitmap

This program loads a bitmap into window

There are many other things that you can do with graphics – referring to the help file and then
looking at week 5 will help you explore this area.

There is a well established Just Basic forum at http://justbasic.conforums.com/index.cgi that has an amazing

amount of help and information.

http://justbasic.conforums.com/index.cgi

Teachers guide to starting to
learn Just Basic

11 igover@somerset.gov.uk – April 2012

Program 11 – Bouncing Ball
This program demonstrates
what can be completed with
graphics.

It introduces several new
commands.

See if you can follow it.

Teachers guide to starting to
learn Just Basic

12 igover@somerset.gov.uk – April 2012

Full list of commands
ABS(n) absolute value of n
ACS(n) arc-cosine of n
"addsprite" sprite command to add a sprite
AND bitwise, boolean AND operator
APPEND purpose parameter in file open statement
AS used in OPEN statements
ASC(s$) ascii value of s$
ASN(n) arc-sine of n
ATN(n) arc-tangent of n
"!autoresize" texteditor command to relocate control automatically
"autoresize" graphics command to relocate control automatically
"backcolor" graphics command to set background color
"background" sprite command to set background image
BackgroundColor$ sets or returns background color for window
BEEP play the default system wave file
BINARY purpose parameter in file open statement
Bitwise Operations modify bit patterns in an object
BMPBUTTON add a bitmap button to a window
BMPSAVE save a bitmap to a disk file
BOOLEAN evaluates to true or false
"box" graphics command to draw box
"boxfilled" graphics command to draw filled box
BUTTON add a button to a window
BYREF passes an argument to a subroutine or function by reference
CALL call a user defined subroutine
CASE specifies a value for select case statement
CHECKBOX add a checkbox to a window
CHR$(n) return character of ascii value n
"circle" graphics command to draw circle
"circlefilled" graphics command to draw filled circle
CLOSE #h close a file or window with handle #h
CLS clear a program's mainwindow
"cls" graphics command to clear drawing area
"!cls" text command to clear texteditor
"color" graphics command to set pen color
COMBOBOX add a combobox to a window
ComboboxColor$ sets or returns combobox color
CommandLine$ contains any command line switches used on startup
CONFIRM opens a confirm dialog box
"!contents" text command to replace contents of texteditor
"!contents?" text command returns contents of texteditor
"!copy" text command to copy text to clipboard
COS(n) cosine of n
"!cut" text command to cut text and copy to clipboard
DATA adds data to a program that can be read with the READ statement
DATE$() return string with today's date
DefaultDir$ a variable containing the default directory
"delsegment" graphics command to delete drawing segment
Dialog window type
DIM array() set the maximum size of a data array
"discard" graphics command to discard unflushed drawing
DisplayWidth a variable containing the width of the display
DisplayHeight a variable containing the height of the display
"down" graphics command to lower pen
"drawbmp" graphics command to display a bitmap
Drives$ special variable, holds drive letters
DO LOOP performs a looping action until/while a condition is met
DUMP force the LPRINT buffer to print
"ellipse" graphics command to draw an ellipse

Teachers guide to starting to
learn Just Basic

13 igover@somerset.gov.uk – April 2012

"ellipsefilled" graphics command to draw a filled ellipse
ELSE used in block conditional statements with IF/THEN
ENABLE make a control active
END marks end of program execution
END FUNCTION signifies the end of a function
END IF used in block conditional statements with IF/THEN
END SELECT signals end of SELECT CASE construct
END SUB signifies the end of a subroutine
EOF(#h) returns the end-of-file status for #h
EXIT exits a looping structure, sub or function
EXIT FOR terminate a for/next loop before it completes
EXIT WHILE terminate a while/wend loop before it completes
EXP(n) returns e^n
FIELD #h, list... sets random access fields for #h
FILEDIALOG opens a file selection dialog box
FILES returns file and subdirectory info
"fill" graphics command to fill with color
"font" set font as specified
ForegroundColor$ sets or returns foreground color for window
FOR...NEXT performs looping action
FUNCTION define a user function
GET #h, n get random access record n for #h
"getbmp" graphics command to capture drawing area
GLOBAL creates a global variable
"go" graphics command to move pen
GOSUB label call subroutine label
"goto" graphics command to move pen
GOTO label branch to label
GRAPHICBOX add a graphics region to a window
GROUPBOX add a groupbox to a window
Graphics window type
Graphics Commands a detailed summary of graphics commands in Just BASIC
"home" graphics command to center pen
IF THEN perform conditional action(s)
Inkey$ contains a character or keycode from a graphics window
INPUT get data from keyboard, file or button
INPUT$(#h, n) get n chars from handle #h, or from the keyboard
INPUT purpose parameter in file open statement
INSTR(a$,b$,n) search for b$ in a$, with optional start n
INT(n) integer portion of n
JOY- global variables containing joystick information read by readjoystick command

Joy1x, Joy1y, Joy1z, Joy1button1, Joy1button2
 Joy2x, Joy2y, Joy2z, Joy2button1, Joy2button2
KILL s$ delete file named s$
LEFT$(s$, n) first n characters of s$
LEN(s$) length of s$
LET var = expr assign value of expr to var
"line" graphics command to draw line
"!line" text command to return text from specified line in texteditor control
"!lines?" text command to return number of lines in texteditor control
LINE INPUT get next line of text from file
LISTBOX add a listbox to a window
ListboxColor$ sets or returns listbox color
LOADBMP load a bitmap into memory
LOC(#handle) return current binary file position
LOCATE locate text in the mainwindow
LOF(#h) returns length of open file #h or bytes in serial buffer
LOG(n) returns the natural logarithm of n
LOWER$(s$) s$ converted to all lowercase
LPRINT print to hard copy

Teachers guide to starting to
learn Just Basic

14 igover@somerset.gov.uk – April 2012

MAINWIN set the width of the main window in columns and rows
MENU adds a pull-down menu to a window
MID$() return a substring from a string
MIDIPOS() return position of play in a MIDI file
MKDIR() make a new subdirectory
MOD returns the result of integer division
"!modified?" text command to return modified status
NAME a$ AS b$ rename file named a$ to b$
NEXT used with FOR
NOMAINWIN keep a program's main window from opening
"north" graphics command to set the current drawing direction
NOT logical and bitwise NOT operator
NOTICE open a notice dialog box
ONCOMERROR set an error handler for serial communications
ON ERROR set an error handler for general program errors
OPEN open a file or window
OPEN "COMn:..." open a communications port for reading/writing
OR logical and bitwise OR operator
"!origin" text command to set origin
"!origin?" text command to return origin
OUTPUT purpose parameter in file open statement
"!paste" text command to paste text from clipboard
"pie" graphics command to draw pie section
"piefilled" graphics command to draw filled pie section
"place" graphics command to locate pen
Platform$ special variable containing platform name
PLAYWAVE plays a *.wav sound file
PLAYMIDI plays a *.midi sound file
"posxy" graphics command to return pen position
"print" graphics command to print hard copy
PRINT print to a file or window
PrinterFont$ returns or sets the font used with LPRINT
PROMPT open a prompter dialog box
PUT #h, n puts a random access record n for #h
RADIOBUTTON adds a radiobutton to a window
RANDOM purpose parameter in file open statement
RANDOMIZE seed the random number generator
READ reads information from DATA statements
REDIM redimensions an array and resets its contents
"redraw" graphics command to redraw segment
REM adds a remark to a program
RESTORE sets the position of the next DATA statement to read
RETURN return from a subroutine call
RIGHT$(s$, n) n rightmost characters of s$
RMDIR() remove a subdirectory
RND(n) returns a random number
"rule" graphics command to set drawing rule
RUN s$, mode run external program s$, with optional mode
SCAN checks for and dispatches user actions
SEEK #h, fpos set the position in a file opened for binary access
"segment" graphics command to return segment ID
SELECT CASE performs conditional actions
"!selectall" text command to highlight all text
"!selection?" text command to return highlighted text
"set" graphics command to draw a point
"setfocus" set input focus to control or window
SIN(n) sine of n
"size" graphics command to set pen size
SPACE$(n) returns a string of n spaces
Sprites all about using sprites in Just BASIC

Teachers guide to starting to
learn Just Basic

15 igover@somerset.gov.uk – April 2012

SQR(n) details about getting the square root of a number
STATICTEXT add a statictext control to a window
STOP marks end of program execution
STOPMIDI stops a MIDI file from playing
STR$(n) returns string equivalent of n
SUB defines a subroutine
TAB(n) cause tabular printing in mainwin
TAN(n) tangent of n
Text window type
Text Commands a detailed summary of text window commands in Just BASIC
TEXTBOX add a textbox (entryfield) to a window
TextboxColor$ sets or returns textbox color
TEXTEDITOR add a texteditor widget to a window
TexteditorColor$ sets or returns texteditor color
TIME$() returns current time as string
TIMER manage a Windows timer
"!trapclose" text command to trap closing of text window
"trapclose" trap closing of window
TRIM$(s$) returns s$ without leading/trailing spaces
"turn" graphics command to reset drawing direction
TXCOUNT(#handle) gets number of bytes in serial communications queue
UNLOADBMP unloads a bitmap from memory
"up" graphics command to lift pen
UPPER$(s$) s$ converted to all uppercase
USING() performs numeric formatting
UpperLeftX specifies the x part of the position where the next window will open
UpperLeftY specifies the y part of the position where the next window will open
VAL(s$) returns numeric equivalent of s$
Version$ special variable containing LB version info
WAIT stop and wait for user interaction
"when" graphics command to trap mouse and keyboard events
WHILE...WEND performs looping action
Window window type
WindowWidth specifies the width of the next window to open
WindowHeight specifies the height of the next window to open
WORD$(s$, n) returns nth word from s$
XOR logical and bitwise XOR operator

